Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 1962-1976, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222655

RESUMO

This study focuses on upcycling cement kiln dust (CKD) as an industrial waste by utilizing the undissolved portion (UNP) as a multicomponent catalyst for bioethylene production from bioethanol, offering an environmentally sustainable solution. To maximize UNP utilization, CKD was dissolved in nitric acid, followed by calcination at 500 °C for 3 h in an oxygen atmosphere. Various characterization techniques confirmed that UNP comprises five different compounds with nanocrystalline particles exhibiting an average crystal size of 47.53 nm. The UNP catalyst exhibited a promising bioethylene yield (77.1%) and selectivity (92%) at 400 °C, showcasing its effectiveness in converting bioethanol to bioethylene with outstanding properties. This exceptional performance can be attributed to its distinctive structural characteristics, including a high surface area and multiple-strength acidic sites that facilitate the reaction mechanism. Moreover, the UNP catalyst displayed remarkable stability and durability, positioning it as a strong candidate for industrial applications in bioethylene production. This research underscores the importance of waste reduction in the cement industry and offers a sustainable path toward a greener future.

2.
ChemistryOpen ; 11(3): e202200021, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35324079

RESUMO

Measuring the Lewis-acidic surface sites in catalysis is problematic when the material's surface area is very low (SBET ≤1 m2 ⋅ g-1 ). For the first time, a quantitative assessment of total acidic surface sites of very small surface area catalysts (MoO3 as pure and mixed with 5-30 % CdO (wt/wt), as well as CdO for comparison) was performed using a smart new probe molecule, tetrahydrofuran (THF). The results were nearly identical compared to using another commonly used probe molecule, pyridine. This audition is based on the limited values of the surface area of these samples that likely require a relatively moderate basic molecule as THF with pKb =16.08, rather than strong basic molecules such as NH3 (pKb =4.75) or pyridine (pKb =8.77). We propose mechanisms for the interaction of vapour phase molecules of THF with the Lewis-cationic Mo and Cd atoms of these catalysts. Besides, dehydration of isopropyl alcohol was used as a probe reaction to investigate the catalytic activity of these catalysts to further support our findings in the case of THF in a temperature range of 175-300 °C. A good agreement between the obtained data of sample MoO3 -10 % CdO, which is characterised by the highest surface area value, the population of Lewis-acidic sites and % selectivity of propylene at all the applied reaction temperatures was found.

3.
Chemosphere ; 295: 133795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124083

RESUMO

Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their potential carcinogenic effect on humans. It showed a characteristic efficiency towards the adsorptive removal of these compounds over a long period, i.e., eight continuous weeks, at ambient temperature and atmospheric pressure. After 8-weeks, the adsorbed amounts of these compounds were determined as: 325.3 mg C7H7Cl, 247.6 mg CHCl3 and 253.3 mg CCl4 per g of γ-Al2O3, respectively. CCl4 was also found to be dissociatively adsorbed on the surface of γ-Al2O3, whereas CHCl3 and C7H7Cl were found to be associatively adsorbed. The prepared γ-Al2O3 has a relatively high surface area (i.e., 192.2 m2. g-1) and mesoporosity with different pore diameters in the range of 25-47 Å. Furthermore, environmental impacts of the nanocomposite γ-Al2O3 preparation were evaluated using life cycle assessment. For prepartion of adsorbent utilising 1 kg of scrap aluminium wire, it was observed that potential energy demand was 288 MJ, climate change potential was 19 kg CO2 equivalent, acidification potential was 0.115 kg SO2 equivalent and eutrophication potential was 0.018 kg PO43- equivalent.


Assuntos
Poluentes Ambientais , Compostos Orgânicos Voláteis , Adsorção , Alumínio , Óxido de Alumínio , Animais , Plumas , Humanos , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...